A Bayesian Network Scoring Metic that Is Based on Globally Uniform Parameter Priors

نویسندگان

  • Mehmet Kayaalp
  • Gregory F. Cooper
چکیده

We introduce a new Bayesian network (BN) scoring metric called the Global Uniform (GU) metric. This metric is based on a particular type of default parameter prior. Such priors may be useful when a BN developer is not willing or able to specify domain-specific parameter priors. The GU parameter prior specifies that every prior joint probability distribution P consistent with a BN structure S is considered to be equally likely. Distribution Pis consistent with S if Pin­ cludes just the set of independence relations de­ fined by S. We show that the GU metric addresses some undesirable behavior of the BDeu and K2 Bayesian network scoring metrics, which also use particular forms of default parameter priors. A closed form formula for computing GU for special classes of BNs is derived. Efficiently computing GU for an arbitrary BN remains an open problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian Network Scoring Metric That Is Based on Globally Uniform Parameter Priors

We introduce a new Bayesian network (BN) scoring metric called the Global Uniform (GU) metric. This metric is based on a particular type of default parameter prior. Such priors may be useful when a BN developer is not willing or able to specify domain-specific parameter priors. The GU parameter prior specifies that every prior joint probability distribution P consistent with a BN structure S is...

متن کامل

Location Reparameterization and Default Priors for Statistical Analysis

This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...

متن کامل

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models

Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002